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* Behaviour Foundation Models (BFMs) based on forward-backward representations (FB) [1] and universal A wers e ca
successor features (USF) [2] provide principled mechanisms for performing zero-shot task generalization. T SPRAR e edel e EB e MERR S e Ve e et B — VCFB
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* However, BFMs assume access to idealised (large & diverse) pre-training datasets that we can't expect e —— i . ‘ ' ‘ ‘ —
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 Can we pre-train BFMs on realistic (small & narrow) datasets? 5 %01 ‘: :
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Forward-backward (FB) BFMs model the environment dynamics using successor measures . . _ _
which are the ex ec(ted )discounted time spent in subsets };f future sta%eS' Figure 2: Conservative BFMs. (Left) Zero-shot RL methods must generalize to any task in z-space. (Middle) FB Figure 4: Aggregate EXORL_ Performgnce. Both conservative BFM Figure 5: D4RL Performance. Conservative BFMs
P P ' overestimates the value of actions not in the dataset. (Rjght) VC-FB suppresses the value of actions not in the variants stochastically dominate vanilla FB. outperform vanilla BFMs, but do not match the
T—1 erformance of the single-task baseline.
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>>_N\\>F> >> 7 7 7 7>
The FB loss relies on actions sampled from the policy, and these may not exist in the dataset e — I |tat|0ns
(7.e. they can be out-of-distribution (OOD)).
Figure 3: Didactic example. The agents are tasked with learning separate policies for reaching & and ®. (a) RND
LrB = E(s,.0,.5001,8:)~D2nz[(F(8t,at,2) ' B(s4) — YF (8141, m2(8141), 2) | B(s4))? — 2F (s4, at, 2) ' B(s¢41)] dataset with all "left” actions removed (b) Best FB rollout after 1 million steps. (c) Best VC-FB performance after 1 * Absolute EXORL performance remains poor compared to methods trained on large/diverse datasets.
~—— million learning steps. : .. : : :
OOD * Performance is sensitive the choice of 7 which selects the degree of conservatism. IQL-style
This leads to value function overestimation at OOD state-action pairs: regularization would likely mitigate this. (c.£. D4RL performance)
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