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1 Introduction

Exercise 1.1

Q

Suppose, instead of playing against a random opponent, the reinforcement learning algorithm
described above played against itself, with both sides learning. What do you think would happen
in this case? Would it learn a different policy for selecting moves?

A

skipped �

Exercise 1.2

Q

Many tic-tac-toe positions appear different but are really the same because of symmetries. How
might we amend the learning process described above to take advantage of this? In what ways
would this change improve the learning process? Now think again. Suppose the opponent did
not take advantage of symmetries. In that case, should we? Is it true, then, that symmetrically
equivalent positions should necessarily have the same value?

A

skipped �

Exercise 1.3

Q

Suppose the reinforcement learning player was greedy, that is, it always played the move that
brought it to the position that it rated the best. Might it learn to play better, or worse, than a
nongreedy player? What problems might occur?

A

skipped �

Exercise 1.4

Q

Suppose learning updates occurred after all moves, including exploratory moves. If the step-size
parameter is appropriately reduced over time (but not the tendency to explore), then the state
values would converge to a different set of probabilities. What (conceptually) are the two sets
of probabilities computed when we do, and when we do not, learn from exploratory moves?
Assuming that we do continue to make exploratory moves, which set of probabilities might be
better to learn? Which would result in more wins?

A

skipped �
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Exercise 1.5

Q

Can you think of other ways to improve the reinforcement learning player? Can you think of
any better way to solve the tic-tac-toe problem as posed?

A

skipped �
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2 Multi-arm Bandits

Exercise 2.1

Q

In e-greedy action selection, for the case of two actions and e = 0.5, what is the probability that
the greedy action is selected?

A

Greedy action selected with p = 0.5 �

Exercise 2.2

Q

Bandit example Consider a k-armed bandit problem with k = 4 actions, denoted 1, 2, 3, and 4.
Consider applying to this problem a bandit algorithm using e-greedy action selection, sample-
average action-value estimates, and initial estimates of Q1(a) = 0, for all a. Suppose the initial
sequence of actions and rewards is A1 = 1, R1 = 1, A2 = 2, R2 = 1, A3 = 2, R3 = 2, A4 =
2, R4 = 2, A5 = 3, R5 = 0. On some of these time steps the e case may have occurred, causing
an action to be selected at random. On which time steps did this definitely occur? On which
time steps could this possibly have occurred?

A

Timestep Q1 Q2 Q3 Q4 Greedy action at timestep Action selected
0 0 0 0 0 - A1

1 1 0 0 0 A1 A2

2 1 1 0 0 A1/A2 A2

3 1 1.5 0 0 A2 A2

4 1 1.66 0 0 A2 A5

5 1 1.66 0 0 A2 end

Table 1: Greedy actions at each timestep of a 4-armed bandit problem

• Action selection at timesteps 0, 1 and 4 are random as they are not reward maximising -
see Table ??.

• Action selection at timestep 2 could be random as A1 is also reward maximising - see
Table ??.

�

Exercise 2.3

Q

In the comparison shown in Figure ??, which method will perform best in the long run in terms
of cumulative reward and probability of selecting the best action? How much better will it be?
Express your answer quantitatively.
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A

In the limit of t → ∞, both non-zero e-greedy policies will learn the optimal action abd value
function q∗. The policy with e = 0.01 will select the optimal action 10x more regularly than
the policy with e = 0.1. �

Exercise 2.4

Q

If the step-size parameters, αn, are not constant, then the estimate Qn is a weighted average
of previously received rewards with a weighting different from that given by (2.6). What is the
weighting on each prior reward for the general case, analogous to (2.6), in terms of the sequence
of step-size parameters?.

A

For a n-dependent α we have:

Qn+1 = Qn + αn [Rn −Qn]

= αnRn + (1− αn)Qn

= αnRn + (1− αn) [Qn−1 + αn−1 [Rn−1 −Qn−1]]

= αnRn + αn−1Rn−1 − αnαn−1Rn−1 + (1− αn)(1− αn−1)Qn−1

=
...

=

n∑
i

αnRn −Rn−1
n∏
i

αn +Q1

n∏
i

(1− αn) (1)

(2)

�

Exercise 2.5

Q

Design and conduct an experiment to demonstrate the difficulties that sample-average methods
have for nonstationary problems. Use a modified version of the 10-armed testbed in which all
the q∗(a) start out equal and then take independent random walks (say by adding a normally
distributed increment with mean 0 and standard deviation 0.01 to all the q∗(a) on each step).
Prepare plots like Figure 2.2 for an action-value method using sample averages, incrementally
computed, and another action-value method using a constant step-size parameter, α = 0.1. Use
α = 0.1 and longer runs, say of 10,000 steps.

A

This is a programming exercise, the relevent code can be found on my GitHub. �

Exercise 2.6

Q

Mysterious Spikes: The results shown in Figure 2.3 should be quite reliable because they are
averages over 2000 individual, randomly chosen 10-armed bandit tasks. Why, then, are there

7
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Figure 1: Stationary versus varying stepsize alpha in a 10-armed bandit problem. We see that the
constant stepsize parameter (exponential decay) performs better than the varying stepsize parameter as
we place more weight on the recently observed (moving) values.

Figure 2

oscillations and spikes in the early part of the curve for the optimistic method? In other words,
what might make this method perform particularly better or worse, on average, on particular
early steps?

A

The optimistic greedy policy with explore on every initial step as all value estimates are greater
than their true value. It is possible, therefore, that it randomly selects the optimal action and
then immediately forgets it in favour of yet-to-be-explored actions. This explains the spike at
timestep ≈ 10. �
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Exercise 2.7

Q

Unbiased Constant-Step-Size Trick In most of this chapter we have used sample averages to
estimate action values because sample averages do not produce the initial bias that constant
step sizes do (see the analysis leading to (2.6)). However, sample averages are not a completely
satisfactory solution because they may perform poorly on nonstationary problems. Is it possi-
ble to avoid the bias of constant step sizes while retaining their advantages on nonstationary
problems? One way is to use a step size of

βn = α/ōn (3)

to process the nth reward for a particular action, where α ¿ 0 is a conventional constant step
size, and ¯on is a trace of one that starts at 0:

ōn = ¯on−1 + α(1− ¯on−1), forn > 0andō0 = 0. (4)

Carry out an analysis like that in (2.6) to show that Qn is an exponential recency-weighted
average without initial bias.

A

If we recall our answer for Exercise 2.4 for varying stepsize, we see that Q1 is weighted by
w =

∏∞
i=1(1 − αi). When i = 1, βn = α, thus w → 0∀i and Q1 no longer affects our estimate

of Qn+1. �

Exercise 2.8

Q

UCB Spikes In Figure ?? the UCB algorithm shows a distinct spike in performance on the 11th
step. Why is this? Note that for your answer to be fully satisfactory it must explain both why
the reward increases on the 11th step and why it decreases on the subsequent steps. Hint: If c
= 1, then the spike is less prominent.

A

After 10 timesteps the UCB algorithm has explored all 10 actions as, until they are selected,
their upper confidence bound is infinite (as Nt(a) = 0) as so it guarenteed to be selected once in
the first 10 actions. At this point the agent has one sample to assess the expected value of each
arm and the same confidence/uncertainty in each action. With c ¡ 0 it is likely to pick the action
with highest return from first sample, which will likely give it an similarly large reward, creating
the spike. Now, the upper confidence bound for that action will decrease and the agent will
select another, less valuable action, causing the decrease in performance at the next timestep.
�

Exercise 2.9

Q

Show that in the case of two actions, the soft-max distribution is the same as that given by the
logistic, or sigmoid, function often used in statistics and artificial neural networks.
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A

Soft-max distribution is defined as:

PrAt = a ≈ eHt(a)∑k
b=1 e

Ht(b)
≈ πt(a) (5)

For two actions 1 and 2 this becomes:

At =
eHt(1)

eHt(1)+eHt(2)
(6)

=
eHt(1)

eHt(1)
(1 +

eHt(2)

eHt(1)
(7)

=
1

eHt(1)(1 + e−x
(8)

(9)

i.e. the sigmoid function with x = Ht(1)−Ht(2). �

Exercise 2.10

Q

Suppose you face a 2-armed bandit task whose true action values change randomly from time
step to time step. Specifically, suppose that, for any time step, the true values of actions 1 and
2 are respectively 10 and 20 with probability 0.5 (case A), and 90 and 80 with probability 0.5
(case B). If you are not able to tell which case you face at any step, what is the best expected
reward you can achieve and how should you behave to achieve it? Now suppose that on each
step you are told whether you are facing case A or case B (although you still don’t know the
true action values). This is an associative search task. What is the best expected reward you
can achieve in this task, and how should you behave to achieve it?

A

Part 1): If we do not know whether we are in task A or B we could decide pick the same action
each time to maximise expected reward. Selecting either action 1 or action 2 every time would
provide an expected reward of 50. Picking actions randomly would also provide an expected
reward of 50 in this example. Part 2): If we know we are in task A or B we can learn the optimal
action for each (A(a) = 2 and B(a) = 1). Doing so would provide us a higher expected reward
than the non-contextual case of 55. �
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3 Finite Markov Decision Processes

Exercise 3.1

Q

Devise three example tasks of your own that fit into the MDP framework, identifying for each its
states, actions, and rewards. Make the three examples as different from each other as possible.
The framework is abstract and flexible and can be applied in many different ways. Stretch its
limits in some way in at least one of your examples.

A

1. Golf: Putting

• State: Coordinates of ball; coordinates of hole; x,y,z contour plot of green; grass
length; grass type; wind speed; wind direction; ball type; putter type.

• Actions: (X, Y) direction of aim; length of stroke

• Rewards: -1 for each unit of distance from hole

2. Optimizing investment portfolio

• State: Investment in each company; cash balance; % return over last minute/hour/day/week/month/year

• Actions: For each investment: buy (discretized by some cash interval), sell (dis-
cretized by some cash interval), stick

• Rewards: +1 for each £ return per day

3. Shoe-tying robot

• State: Coordinates of laces; coordinates of robot arms/joints

• Actions: Grip pressure on laces; adjust position of arms to coordinates x,y,z

• Rewards: -1 for unit of shoe displacement from foot once tied.

�

Exercise 3.2

Q

Is the MDP framework adequate to usefully represent all goal-directed learning tasks? Can you
think of any clear exceptions?

A

The MDP framework fails when the state cannot be fully observed. For example, one may try
to control the temperature of a house using a state space represented by one thermometer in one
room. Our agent would control the temperature observed by that thermometer well, but would
be blind to temperatures that aren’t measured by said thermometer elsewhere in the house. �
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s a s′ r p(s, r, |s, a)
high search high rsearch α
high search low rsearch (1− α)
low search high -3 (1− β)
low search low rsearch β
high wait high rwait 1
low wait low rwait 1
low recharge high 0 1

Exercise 3.3

Q

Consider the problem of driving. You could define the actions in terms of the accelerator,
steering wheel, and brake, that is, where your body meets the machine. Or you could define
them farther out—say, where the rubber meets the road, considering your actions to be tire
torques. Or you could define them farther in—say, where your brain meets your body, the
actions being muscle twitches to control your limbs. Or you could go to a really high level and
say that your actions are your choices of where to drive. What is the right level, the right place
to draw the line between agent and environment? On what basis is one location of the line
to be preferred over another? Is there any fundamental reason for preferring one location over
another, or is it a free choice?

A

There’s a trade-off between state-action space complexity, computational expense and accuracy.
If we draw the boundary at the brain we would create a state-action space contingent on the
number of neurons in the brain and their interplay with physical actions like turning the steering
wheel; too large to be stored or computed efficiently. Equally, if we draw the boundary at the
journey level, then we miss the detail required to act on second-by-second state changes on the
road that could lead to a crash. The fundamental limiting factor in this selection is whether the
goal can be achieved safely at your chosen layer of abstraction, indeed this feels like one of the
tasks of engineering more widely. �

Exercise 3.4

Q

Give a table analogous to that in Example 3.3, but for p(s0, r|s, a). It should have columns for
s, a, s′, r, and p(s0, r|s, a), and a row for every 4-tuple for which p(s0, r|s, a) > 0.

A

As there is no probability distribution over the rewards (i.e. for each state-action pair, the agent
receives some reward with p(r) = 1)), p(s′, r|s, a) = p(s′|s, a). �

Exercise 3.5

Q

The equations in Section 3.1 are for the continuing case and need to be modified (very slightly)
to apply to episodic tasks. Show that you know the modifications needed by giving the modified
version of (3.3).

12



A

Equation 3.3 from section 3.1 is:∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1,∀s ∈ S, a ∈ A(s) (10)

for episodic tasks this becomes:∑
s′∈S+

∑
r∈R

p(s′, r|s, a) = 1,∀s ∈ S, a ∈ A(s) (11)

�

Exercise 3.6

Q

Suppose you treated pole-balancing as an episodic task but also used discounting, with all
rewards zero except for 1 upon failure. What then would the return be at each time? How does
this return differ from that in the discounted, continuing formulation of this task?

A

In the discounted, episodic version of the pole-balancing task, the return after each episode is:

Gt = −γT−t (12)

where T is the timestep at which the episode ends i.e. the task is failed. In the continuining
case the cumulative return is:

Gt = −
∑
K∈K

γK−1 (13)

where K is the set of times where the task is failed. Note this reward will increase in the long run,
irrespective of improved performance. Designing this as a continuous task does not therefore
make sense here. �

Exercise 3.7

Q

Imagine that you are designing a robot to run a maze. You decide to give it a reward of +1
for escaping from the maze and a reward of zero at all other times. The task seems to break
down naturally into episodes—the successive runs through the maze—so you decide to treat it
as an episodic task, where the goal is to maximize expected total reward (3.7). After running
the learning agent for a while, you find that it is showing no improvement in escaping from the
maze. What is going wrong? Have you effectively communicated to the agent what you want it
to achieve?

A

We have designed the reward such that it receives +1 only once it has exited the maze, and are
therefore not incentivising it to learn how to exit the maze faster. To do so, we would need to
provide a negative reward proportional to time in the maze e.g. -1 per timestep. �
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Exercise 3.8

Q

Suppose γ = 0.5 and the following sequence of rewards is received R1 = -1, R2 = 2, R3 = 6,
R4 = 3, and R5 = 2, with T = 5. What are G0, G1, . . . , G5? Hint: Work backwards.

A

We know: Gt = Rt+1+γGt+1 Therefore, for the terminal state: G5 = 0 then: G4 = 2+(0.5×0) =
2G3 = 3 + (0.5 × 2) = 4G2 = 6 + (0.5 × 4) = 8G1 = 2 + (0.5 × 8) = 6G0 = −1 + (0.5 × 6) = 2
Note our expected cumulative reward Gt depends greatly on our instant reward Gt+1 because
it is not discounted. �

Exercise 3.9

Q

Suppose γ = 0.9 and the reward sequence is R1 = 2 followed by an infinite sequence of 7s. What
are G1 and G0?

A

We know that if the reward is an infinite series of 1s, Gt is: Gt =
∑∞
k=0 γ

k = 1
1−γ

So for an infinite series of 7s this becomes: Gt =
∑∞
k=0 γ

k = 7
0.1

Therefore:

G0 = 2 +
7

0.1
(14)

= 72 (15)

(16)

and

G1 = 7 +
7

0.1
(17)

= 77 (18)

(19)

�

Exercise 3.10

Q

Prove the second equality in (3.10).

A

Gt =
∑∞
k=0 γ

k

Expanding out the geometric series we get:

s = a+ aγ + aγ2 + . . .+ aγn (20)

sγ = aγ + aγ2 + aγ3 + . . .+ aγn+1 (21)

(22)
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Subtract the first series from the second series and we get:

s− sγ = a− aγn+1 (23)

s(1− γ) = a(1− γn+1) (24)

s =
a(1− γn+1)

1− γ
(25)

(26)

If |γ| < 0, in the limit as n →∞ we get:

s =
a

1− γ
(27)

and in our special case a = 0 so:

s = Gt =
1

1− γ
(28)

�

Exercise 3.11

Q

If the current state is St, and actions are selected according to a stochastic policy π, then what
is the expectation of Rt+1 in terms of π and the four-argument function p (3.2)

A

Eπ[Rt+1|st] =
∑
a π(a|s)

∑
s′
∑
r p(s

′, r|s, a)[r] �

Exercise 3.12

Q

Give an equation for vπ in terms of qπ and π.

A

The state value function vπ is equal to the expected cumulative return from that state given a
distribution of actions. The state-action value function qπ is the value of being in a state and
taking a deterministic action. Therefore the state value function is the weighted sum of the
state action value function, with the weights equal to the probabilities of selecting each action:
vπ =

∑
a π(a|s)qπ(s, a) �

Exercise 3.13

Q

Give an equation for qπ in terms of vπ and the four-argument p.

A

Given an action a, the state-action value function is the probability distributions over the
possible next states and rewards from that action, times the one-step reward and the discounted
state value function at the next timestep: qπ =

∑
s′∈S

∑
r∈R p(s

′, r|s, a)[r + γvπ(st+1)] �
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Figure 3: Gridworld example for ex. 3.14

Exercise 3.14

Q

The Bellman equation (3.14) must hold for each state for the value function vπ shown in Figure
3.2 (right) of Example 3.5. Show numerically that this equation holds for the center state,
valued at +0.7, with respect to its four neighbouring states, valued at +2.3, +0.4, 0.4, and
+0.7. (These numbers are accurate only to one decimal place.) .

A

Bellman equation for vπ is:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (29)

for the centre square in Figure 3 we get the following:

vπ(s) = 0.25 [0.9× 2.3] + 0.25 [0.9× 0.7] + 0.25 [0.9× 0.4] + 0.25 [0.9×−0.4] (30)

= 0.68 ≈ 0.7 (31)

(32)

�

Exercise 3.15

Q

In the gridworld example, rewards are positive for goals, negative for running into the edge of
the world, and zero the rest of the time. Are the signs of these rewards important, or only the
intervals between them? Prove, using (3.8), that adding a constant c to all the rewards adds a
constant, vc, to the values of all states, and thus does not affect the relative values of any states
under any policies. What is vc in terms of c and γ?

A

Part 1): The sign of the reward is of no consequence, it is indeed the interval between each
reward that drives behaviour. Part 2): Equation 3.8 is as follows:

Gt =

∞∑
k=0

γkRt+k+1 (33)
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when we add a constant c to all rewards this becomes: Gt =
∑∞
k=0 γ

k[Rt+k+1 +c]Gt = Rt+k+1

1−γ +
c

1−γ
Expected cumulative reward from every state receives a constant additive term. vc in terms of
c and γ is:

vc = E

[ ∞∑
k=0

γkc

]
(34)

=
c

1− γ
(35)

(36)

�

Exercise 3.16

Q

Now consider adding a constant c to all the rewards in an episodic task, such as maze running.
Would this have any effect, or would it leave the task unchanged as in the continuing task above?
Why or why not? Give an example.

A

In the episodic task adding a constant to all rewards does affect the agent. Since the cumulative
reward now depends on the length of the episode (Gt =

∑T
k=t+1 γ

k−t−1Rk), timesteps that
incur positive rewards act to lengthen the episode and vice versa. In the maze running example,
we may have chosen to give the agent -1 reward at each timestep to ensure it completes the task
quickly. If we add c = 2 to every reward such that the reward at each timestep is now positive,
the agent is now incentivised to not find the exit, and continue collecting intermediate rewards
indefinitely. �

Exercise 3.17

Figure 4: Backup diagram for qπ

Q

What is the Bellman equation for action values, that is, for qπ? It must give the action value
qπ(s, a) in terms of the action values, qπ(s0, a0), of possible successors to the state–action pair
(s, a). Hint: The backup diagram to the right corresponds to this equation. Show the sequence
of equations analogous to (3.14), but for action values.
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A

qπ(s, a) = Eπ[Gt|St = s,At = a] (37)

= Eπ[Rt+1 + γGt+1|St = s,At = a] (38)

=
∑
s′,r

p(s′, r|s, a)[r + γEπ[Gt+1|s′, a′]] (39)

=
∑
s′,r

p(s′, r|s, a)[r + γqπ(s′, a′)] (40)

(41)

�

Exercise 3.18

Q

A

vπ(s) = Eπ [qπ(s, a)] vπ(s) =
∑
a

π(a|s)qπ(s, a) (42)

�

Exercise 3.19

Q

A

qπ(s, a) = E [Rt+1 + vπ(s′)|St = s)] (43)

=
∑
s′,r

p(s′, r|s, a)[r + vπ(s′)] (44)

(45)

�
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Exercise 3.20

Q

Figure 5: Value functions for golf.

Draw or describe the optimal state-value function for the golf example.

A

Qualitatively, the optimal state-value function for golf (outlined by Figure ??) would be derived
from a policy that selected the driver for the first two shots (off-the green), then selected the
putter for the final shot (on the green). �
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Exercise 3.21

Q

Draw or describe the contours of the optimal action-value function for putting, q∗(s, putter), for
the golf example.

A

The optimal action-value function is given by the following:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ argmax
a

q∗(s, a)] (46)

Since we have only one action(putter), the argmax collapses to v∗(s
′), and q∗(s, a) = v∗(s) -

illustrated in Figure ??. �

Exercise 3.22

Q

A

Let’s first evaluate the simplest case of γ = 0. Recall that:

vπ(s) = Eπ[Rt+1 + γGt+1|St = s] (47)

For πleft we get:

vπleft
= 1 + Eπleft

[0× γGt+1] (48)

vπleft
= 1 (49)

(50)

And for πright we get:

vπleft
= 0 + Eπleft

[0× γGt+1] (51)

vπleft
= 0 (52)

(53)

So the optimal policy for γ = 0 is vπleft
. If instead γ = 0.9, we get for πleft:
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vπleft
= 1 + Eπleft

[0.9×Gt+1] (54)

vπleft
= 1 + Eπleft

[0.9× [rt+1 + γGt+2]] , (55)

(56)

where Gt+2 is our expected reward back at our current state. We can negate it and just look
at the first loop, as max reward over first loop will create max reward in the limit. Therefore:

vπleft
= 1 + 0.9× 0 = 1, (57)

vπright
= 0 + 0.9× 2 = 1.8 (58)

(59)

So the optimal policy for γ = 0 is vπright
. If, finally, γ = 0.5, we get:

vπleft
= 1 + 0.5× 0 = 1, (60)

vπright
= 0 + 0.5× 2 = 1 (61)

(62)

So both polices are optimal. �

Exercise 3.23

Q

Give the Bellman equation for q∗ for the recycling robot.

A

q∗(s, a) =
∑
s′,r p(s

′, r|s, a)[r + γ argmaxa∈A q∗(s
′, a′)] where A = {search,wait, recharge} �

Exercise 3.24

Q

Figure 3.5 gives the optimal value of the best state of the gridworld as 24.4, to one decimal
place. Use your knowledge of the optimal policy and (3.8) to express this value symbolically,
and then to compute it to three decimal places.

A

We can observe from the grid that γ = 22/24.4 = 0.9016
Equation 3.8 was:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + γ4Rt+5 + γ5Rt+6 + . . . =

∞∑
k=0

γkRt+k+1 (63)

We can represent the optimal value function v∗ as:

v∗(A) = r + γ(v∗(A+ 1)) (64)

= 10 + 0.9016(16) (65)

= 24.426to 3 d.p. (66)

(67)

�
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Exercise 3.25

Q

Give an equation for v∗ in terms of q∗.

A

v∗(s) = maxa∈A qπ∗(s, a)
i.e. returning to the diagram in exercise 3.18, v∗ is defined as selecting the action (in that case
of a possible 3) that produces the highest state-action value function �

Exercise 3.26

Q

Give an equation for q∗ in terms of v∗ and the four-argument p.

A

q∗(s, a) = max
∑
s′,r p(s

′, r|s, a)[r + v∗(s)] �

Exercise 3.27

Q

Give an equation for π∗ in terms of q∗

A

The optimal policy is the one that acts greedily w.r.t the optimal state-action value function i.e.
it picks the action that has the highest q(s, a) in the following state. π∗(a|s) = maxa∈A(s) q∗(s

′, a)
�

Exercise 3.28

Q

Give an equation for π∗ in terms of v∗ and the four-argument p.
The optimal policy is the one that acts greedily w.r.t the optimal state value function conditioned
on the system dynamics

A

π∗(a|s) = maxa∈A(s)

∑
s′,r p(s

′, r|s, a)[rv∗(s
′)] �

Exercise 3.29

Q

Rewrite the four Bellman equations for the four value functions (vπ, v∗, qπ, andq∗) in terms of
the three argument function p (3.4) and the two-argument function r (3.5).

A

tbc �
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4 Dynamic Programming

Exercise 4.1

Q

In Example 4.1, if π is the equiprobable random policy, what is qπ(11, down)? What is
qπ(7, down)?

A

The Bellman equation for q(s, a) is:

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
(68)

For the state-action pairs posed in the question, the Bellman equation becomes:

qπ(11, down) = −1 (69)

qπ(7, down) = −1 +−14 (70)

= −15 (71)

(72)

as γ = 1 because MDP is undiscounted. �

Exercise 4.2

Q

In Example 4.1, suppose a new state 15 is added to the gridworld just below state 13, and
its actions, left, up, right, and down, take the agent to states 12, 13, 14, and 15, respectively.
Assume that the transitions from the original states are unchanged. What, then, is vpi(15) for
the equiprobable random policy? Now suppose the dynamics of state 13 are also changed, such
that action down from state 13 takes the agent to the new state 15. What is vπ(15) for the
equiprobable random policy in this case?

A

vπ(15) = 0.25 [(−1 +−20) + (−1 +−22) + (−1 +−14) + (−1 + vπ(15))] (73)

= 0.25 [(−60 + vπ(15))] (74)

= −15 + 0.25 [vπ(15)] (75)

(76)

and we know vπ(15) == vπ(13) == −20 as the state transitions and value functions at next
state are identical. Therefore we get:

vπ(15) = −15 + 0.25 [−20] (77)

= −20 (78)

(79)

If the dynamics are changed such one can transition from state 13 into 15, the characteristic of
the MDP are unchanged. Moving into state 15, which has the same value as state 13 and the
same subsequent dynamics, is identical to returning back to state 13 - as was the case previously.
The value function is therefore unchanged and vπ(15) = −20 �
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Exercise 4.3

Q

What are the equations analogous to (4.3), (4.4), and (4.5), but for action-value functions instead
of state-value functions?

A

qπ(s) = Eπ [Rt+1 + γqπ(St+1, At+1|St = s,At = a)] vπ(s) (80)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
(81)

qk+1(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qk(s′, a′)

]
(82)

(83)

�

Exercise 4.4

Q

The policy iteration algorithm on page 80 has a subtle bug in that it may never terminate if the
policy continually switches between two or more policies that are equally good. This is okay for
pedagogy, but not for actual use. Modify the pseudocode so that convergence is guaranteed.

A

When taking the argmax over a in the policy improvement step of the algorithm, it’s possible
that we continue to flip backward and forward between two actions that are both optimal forever.
At the moment, a tie is broken by randomly selecting between the value maximising actions. We
could instead always select the first action to result from the argmax, this way we would ensure
that the same optimal action is picked during iteration, switching the policy-stable boolean to
true, and ensuring convergence. �

Exercise 4.5

Q

How would policy iteration be defined for action values? Give a complete algorithm for com-
puting q∗, analogous to that on page 80 for computing v∗. Please pay special attention to this
exercise, because the ideas involved will be used throughout the rest of the book.

A

1. Initialization: q(s, a) and π(s) initialised arbitrarily as before

2. Policy Evaluation: Loop for each state-action pair (s, a), s ∈ S, a ∈ A:
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q ← Q(s, a)

Q(s, a)←
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)Q(s′, a′)

]
δ ← max(δ, |q −Q(s, a)|)

(84)

3. Policy Improvement:

policy-stable← True

Loop for each state-action pair (s,a), s ∈ S, a ∈ A :

old− action← π(s)

π(s)← argmax
a

∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
if old-action 6= π(s), then policy-stable← False

If policy-stable, then stop and return Q ≈ q∗andπ ≈ π∗; else return to 2.

(85)

�

Exercise 4.6

Q

Suppose you are restricted to considering only policies that are ε-soft, meaning that the prob-
ability of selecting each action in each state, s, is at least ε/|A(s)|. Describe qualitatively the
changes that would be required in each of the steps 3, 2, and 1, in that order, of the policy
iteration algorithm for v∗ on page 80.

A

During the policy improvement step (3), instead of the argmax creating a deterministic action
in a state, we would update the policy such that each action a ∈ A would receive probability
p(a) = ε/|A(s)|, then the max action would receive probability 1 − ε + ε/|A(s)|. The output
policy is therefore stochastic, not deterministic. During the policy evaluation step (2), instead
of looping over the states only, we would loop over all states and actions, weighting the value of
each state-action by the probability of the action being selecting according to our ε-soft policy.
In step one, the policy would need to be initialised with an arbitrary distribution over the action
space in each state. �

Exercise 4.7

Q

Write a program for policy iteration and re-solve Jack’s car rental problem with the following
changes. One of Jack’s employees at the first location rides a bus home each night and lives
near the second location. She is happy to shuttle one car to the second location for free. Each
additional car still costs $2, as do all cars moved in the other direction. In addition, Jack has
limited parking space at each location. If more than 10 cars are kept overnight at a location
(after any moving of cars), then an additional cost of $4 must be incurred to use a second
parking lot (independent of how many cars are kept there). These sorts of non-linearities and
arbitrary dynamics often occur in real problems and cannot easily be handled by optimization
methods other than dynamic programming. To check your program, first replicate the results
given for the original problem.
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A

This is a programming exercise, the relevent code can be found on my GitHub. �

Exercise 4.8

Q

Why does the optimal policy for the gambler’s problem have such a curious form? In particular,
for capital of 50 it bets it all on one flip, but for capital of 51 it does not. Why is this a good
policy?

A

When the coin is bias against us it makes sense to minimise the number of flips we make as,
in the limit, we cannot win. Consequently, we can win with probability 0.4 is we stake our full
capital at 50. All other bets besides 50 are designed to get us back to 50 if we lose, or up to 50
if we win, from where we take our 40% chance. For example, when our capital is 55, we stake
5, knowing that we are likely to fall back to 50 where we will go for the win. �

Exercise 4.9

Q

Implement value iteration for the gambler’s problem and solve it for ph = 0.25 and ph = 0.55.
In programming, you may find it convenient to introduce two dummy states corresponding to
termination with capital of 0 and 100, giving them values of 0 and 1 respectively. Show your
results graphically, as in Figure 4.3. Are your results stable as θ → 0?

A

This is a programming exercise, the relevent code can be found on my GitHub.

Exercise 4.10

Q

What is the analog of the value iteration update (4.10) for action values, qk+1(s, a)?

A

vk+1(s) =
∑
s′,r

p(s′, r|s, a)

[
r + γ argmax

a′
qk(s′, a′)

]
(86)

�
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5 Monte Carlo Methods

Exercise 5.1

Q

Consider the diagrams on the right in Figure 5.1. Why does the estimated value function jump
up for the last two rows in the rear? Why does it drop off for the whole last row on the left?
Why are the frontmost values higher in the upper diagrams than in the lower?

A

1. The value function jumps for the rows in the rear because the player sticks at 20 and 21,
where it is unlikely the dealer beat him given her policy to twist for all hands lower than
17.

2. The value drops when the dealer holds an ace because it can be used to equal either 11 or
1, a stronger position than any of the other hands the dealer could hold.

3. When an ace is usable, the value function is higher because the player can change the
value of his ace from 11 to 1 if she is about to go bust.

�

Exercise 5.2

Q

Suppose every-visit MC was used instead of first-visit MC on the blackjack task. Would you
expect the results to be very different? Why or why not?

A

The state is blackjack is monotonically increasing and memoryless (sampled with replacement),
thus you can never revisit an old state in an episode once it has been first visited. Using every
visit MC in this case would have no effect on the value function. �

Exercise 5.3

Q

What is the backup diagram for Monte Carlo estimation of qπ?

A

Figure 6: Monte carlo backup diagram for estimation of qπ from one episode

�
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Exercise 5.4

Q

The pseudocode for Monte Carlo ES is inefficient because, for each state–action pair, it maintains
a list of all returns and repeatedly calculates their mean. It would be more efficient to use
techniques similar to those explained in Section 2.4 to maintain just the mean and a count (for
each state–action pair) and update them incrementally. Describe how the pseudocode would be
altered to achieve this.

A

Update formula from section 2.4 is:

Qn = Qn +
1

n
[Rn −Qn] (87)

As we reverse through the episode, we initialise value Ns,a for each observed s and a to count
the number of visits to the state. Instead of appending G to returns, we use our now initialised
N , and G to update the value of Q. Doing so is more efficient as we don’t need to hold a list of
all returns which does not scale, we just update using the update rule outlined above. �

Exercise 5.5

Q

Consider an MDP with a single nonterminal state and a single action that transitions back to
the nonterminal state with probability p and transitions to the terminal state with probability
1− p. Let the reward be +1 on all transitions, and let γ = 1. Suppose you observe one episode
that lasts 10 steps, with a return of 10. What are the first-visit and every-visit estimators of
the value of the nonterminal state?

A

For first-visit estimator of the state is the return collected at the end of the episode having
visited the first step, assuming we initialise G = 0: G = 10
The every-visit estimator is an average of each of the 10 returns received from the state:

G =
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

10
= 5.5 (88)

�

Exercise 5.6

Q

What is the equation analogous to (5.6) for action values Q(s, a) instead of state values V (s),
again given returns generated using b?

A

Equation 5.6 is as follows:

V (s) =

∑
t∈T (s) ρt:T (t)−1Gt∑
t∈T (s) ρt:T (t)−1

(89)
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We only require that T tracks state action-pairs rather than just states. Equation 5.6 therefore
becomes:

Q(s, a) =

∑
t∈T (s,a) ρt:T (t)−1Gt∑
t∈T (s,a) ρt:T (t)−1

(90)

�

Exercise 5.7

Q

In learning curves such as those shown in Figure 5.3 error generally decreases with training, as in-
deed happened for the ordinary importance-sampling method. But for the weighted importance-
sampling method error first increased and then decreased. Why do you think this happened?

A

In the initial episodes, we are unlikely to see episodes from the behaviour policy that match our
target policy (i.e. hit for all card sums ¡ 20 and stick thereafter), therefore our estimate for V (s)
will remain 0, which happens to be close to our ground truth Vπ(s). As we see some trajectories
from b that match our target policy, variance in our output will be high initially, leading to a
higher error, and will drop gradually as we observe further trajectories until it approaches the
true value asymptotically after 10,000 episodes. �

Exercise 5.8

Q

The results with Example 5.5 and shown in Figure 5.4 used a first-visit MC method. Suppose
that instead an every-visit MC method was used on the same problem. Would the variance of
the estimator still be infinite? Why or why not?

A

The variance of the estimator would remain infinite, as the expected return is still 1 for every-
visit to the state. The only difference between first-visit and every-visit MC in this case is that
the number of terms increases α to the number of visits to the state and so would continue to
run to infinity. �

Exercise 5.9

Q

Modify the algorithm for first-visit MC policy evaluation (Section 5.1) to use the incremental
implementation for sample averages described in Section 2.4.

A

Modifying the above to include sample averages we change the last two lines. Instead of ap-
pending G to Returns(St) and averaging, we update V (St) directly using: V (St) = V (St) +
1
n [G− V (St)]
to do this we need to initialise a new variable n that counts the number of cross-episode visits
to state St. �
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Exercise 5.10

Q

Derive the weighted-average update rule (5.8) from (5.7). Follow the pattern of the derivation
of the unweighted rule (2.3).

A

We have Co = 0 and Cn =
∑n
k=1Wk. Therefore:

Vn+1 =

∑n
k=1WkGk
Cn

(91)

Vn+1Cn =

n∑
k=1

WkGk (92)

Vn+1Cn = WnGn

n−1∑
k=1

WkGk (93)

Vn+1Cn = WnGn + Vn

n−1∑
k=1

Wk (94)

Vn+1Cn = WnGn + VnCn−1 (95)

Vn+1Cn = WnGn + Vn (Cn −Wn) (96)

... (97)

Vn+1 = Vn +
Wn

Cn
[Gn − Vn] (98)

(99)

�

Exercise 5.11

Q

In the boxed algorithm for off-policy MC control, you may have been expecting the W update

to have involved the importance-sampling ratio π(At|St)
b(At|St) , but instead it involves 1

b(At|St) . Why

is this nevertheless correct?
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A

Because our policy π(St) is a deterministic, greedy one, we are only observing trajectories where
π(At|St) = 1, hence the numerator in the equation = 1. �

Exercise 5.12

This is a programming exercise, the relevent code can be found on my GitHub. �

Exercise 5.13

Q

Show the steps to derive (5.14) from (5.12).

A

5.12 is:

ρt:T (t)−1Rt+1 = Rt+1

T−1∏
k=t

π(Ak|Sk)

b(Ak|Sk)
(100)

(101)

�

Exercise 5.14

Q

Modify the algorithm for off-policy Monte Carlo control (page 111) to use the idea of the trun-
cated weighted-average estimator (5.10). Note that you will first need to convert this equation
to action values.

A

... �
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6 Temporal-Difference Learning

Exercise 6.1

Q

If V changes during the episode, then (6.6) only holds approximately; what would the difference
be between the two sides? Let Vt denote the array of state values used at time t in the TD
error (6.5) and in the TD update (6.2). Redo the derivation above to determine the additional
amount that must be added to the sum of TD errors in order to equal the Monte Carlo error.

A

Equation 6.5 becomes: δt = Rt+1 + γVt(St+1) − Vt(St) and equation 6.2 becomes: Vt+1(St) =
Vt(St) + α [Rt+1 + γVt(St+1 − Vt(St)]. We then proceed as follows:

Gt − Vt(St) = Rt+1 + γGt+1 − Vt(St) + γVt(St+1)− γVt(St+1) (102)

= δt + γ(Gt+1 − Vt(St+1)) (103)

= δt + γ(Gt+1 − Vt+1(St+1)) + γθt+1,with θt = α [Rt+1 + γVt(St+1 − Vt(St))]
(104)

= δt + γδt+1 + γ2(Gt+2 − Vt+2(St+2)) + γθt+1 + γ2θt+2 (105)

=

T−1∑
k=t

[
γk−tδk + γk−t+1θk+1

]
(106)

�

Exercise 6.2

Q

This is an exercise to help develop your intuition about why TD methods are often more efficient
than Monte Carlo methods. Consider the driving home example and how it is addressed by TD
and Monte Carlo methods. Can you imagine a scenario in which a TD update would be better on
average than a Monte Carlo update? Give an example scenario—a description of past experience
and a current state—in which you would expect the TD update to be better. Here’s a hint:
Suppose you have lots of experience driving home from work. Then you move to a new building
and a new parking lot (but you still enter the highway at the same place). Now you are starting
to learn predictions for the new building. Can you see why TD updates are likely to be much
better, at least initially, in this case? Might the same sort of thing happen in the original
scenario?

A

The hint above gives intuition to the answer. Let’s assume we are trying to learn the optimal
policy for playing a round of golf at my local course, and we assume we have already learned
the value function for the course previously using monte carlo and td-learning. If 1 of the 18
holes is changed, monte carlo methods would require us to play the whole course to update our
understanding of the states relating to the new hole once. With TD-learning, all we have to do
is make predictions about our new hole, then we can revert to previously learned value function
for the remaining holes. i.e. we bootstrap off of previous knowledge more effectively with TD-
learning than monte carlo. Our convergence to the true value function using TD-learning should
hence be quicker. �
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Exercise 6.3

Q

From the results shown in the left graph of the random walk example it appears that the first
episode results in a change in only V (A). What does this tell you about what happened on the
first episode? Why was only the estimate for this one state changed? By exactly how much was
it changed?

A

Figure 7: Random walk example

The result of the first episode suggests the episode terminated at the left block for no reward.
The value of state A was updated as follows:

V (A) = V (A) + α [Rt+1 + V (ST )− V (A)] (107)

= 0.5 + 0.1 [0 + 0− 0.5] (108)

= 0.45 (109)

�

Exercise 6.4

Q

The specific results shown in the right graph of the random walk example are dependent on
the value of the step-size parameter, α. Do you think the conclusions about which algorithm is
better would be affected if a wider range of α values were used? Is there a different, fixed value
of α at which either algorithm would have performed significantly better than shown? Why or
why not?

A

It appears from the plot the long-term accuracy of TD methods is inversely proportional to
the chosen α, which makes sense given larger alphas would cause the value function to oscillate
around the true value function. It is not clear from the plot whether different values of α for the
MC method would have increased performance as there is no concrete difference in the algorithm
performance based on α. It appears the main drawback of the monte carlo method is that it
makes significantly fewer value function updates than TD methods. For 100 episodes, the MC
method can make no more than 100 updates. For the TD method, the expected episode length
is 6, and so it makes 600 value function updates in 100 episodes. No value of α can overcome
the reduced sample rate. �
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Exercise 6.5

Q

In the right graph of the random walk example, the RMS error of the TD method seems to
go down and then up again, particularly at high α’s. What could have caused this? Do you
think this always occurs, or might it be a function of how the approximate value function was
initialized?

A

As discussed above, I believe this will always occur for high α as the weight given to the TD
error will exaggerate small errors. The will cause the estimated value function to bounce back
and forth across the true value without converging. In turn, this will cause the estimate for V (c)
(initialised in this example at its true value) to drift away from the correct estimate, increasing
RMS error. �

Exercise 6.6

Q

In Example 6.2 we stated that the true values for the random walk example are 1
6 ,

2
6 ,

3
6 ,

4
6 and 5

6
for states A through E. Describe at least two different ways that these could have been computed.
Which would you guess we actually used? Why?

A

1. Dynamic Programming: we know the policy π (take either action with p(a) = 0.5),
and we know the transition function p(s′, r|s, a) = 1 ∀s, a, thus the value of each state can
be computed exactly.

2. First-visit monte carlo policy prediction: set-up the state space and run simulations
with our policy π. After each episode, back-prop the returns to each state and average.

I suspect the authors used dynamic programming as it requires solving 6 trivial simultaneous
equations, whereas the MC method may require thousands of episodes to converge on the true
value. �

Exercise 6.7

Q

Design an off-policy version of the TD(0) update that can be used with arbitrary target policy
π and covering behaviour policy b, using at each step t the importance sampling ratio ρt:t (5.3).

A

Our TD update is:
V (s) = V (s) + α [Rt+1 + γV (s′)− V (s)] (110)

and our importance sampling ratio is:

ρt:t =
π(A|S)

b(A|S)
(111)
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We assume an episode of experience is produced by our behaviour policy b, and the update
becomes:

Vπ(s) = Vπ(s) + α [ρt:tRt+1 + ρt:tγV (s′)− V (s)] , (112)

i.e. each update is weighted by the likelihood of the action being taken by the target policy
compared to the behaviour policy, divided by sum of all previous importance samples.
�

Exercise 6.8

Q

Show that an action-value version of (6.6) holds for the action-value form of the TD error
δt = Rt+1 + γQ(St+1, At+1)−Q(St, At), again assuming that the values don’t change from step
to step.

A

Recall, equation 6.6 was the monte carlo error written in terms of the TD error:

Gt − V (St) =

T−1∑
k=t

γk−tδk (113)

We amend 6.6 as follows:

Gt −Q(St, At) = Rt+1 + γGt+1 −Q(St, At) + γQ(St+1, At+1)− γQ(St+1, At+1) (114)

= δt + γ (Gt+1 −Q(St+1, At+1)) (115)

= δt + γδt+1 + γ2 (Gt+2 −Q(St+2, At+2) (116)

... (117)

=

T−1∑
k=t

γk−tδk (118)

�

Exercise 6.9

Q

Re-solve the windy gridworld assuming eight possible actions, including the diagonal moves,
rather than four. How much better can you do with the extra actions? Can you do even better
by including a ninth action that causes no movement at all other than that caused by the wind?

A

This is a programming exercise, the relevent code can be found on my GitHub.

With the extra actions, the optimal policy is now 7 moves as opposed to 15 moves with 4 actions.
Adding the 9th action does not improve the optimal policy, the terminal square is 7 moves away
from the start square and so adding an action that keeps the agent stationary cannot improve
the policy. See Figures 8 and 9 plot the optimal policy for 4 and 8 actions respectively. Each
agent learned from 10,000 episodes of self-play. �

36

https://github.com/enjeeneer/sutton_and_barto


Figure 8: Optimal policy with 4 available actions

Figure 9: Optimal policy with 8 available actions

Exercise 6.10

Q

Re-solve the windy gridworld task with King’s moves, assuming that the effect of the wind, if
there is any, is stochastic, sometimes varying by 1 from the mean values given for each column.
That is, a third of the time you move exactly according to these values, as in the previous
exercise, but also a third of the time you move one cell above that, and another third of the
time you move one cell below that. For example, if you are one cell to the right of the goal and
you move left, then one-third of the time you move one cell above the goal, one-third of the time
you move two cells above the goal, and one-third of the time you move to the goal.

A

Implementation is identical to above with amended transition function. Exercise not yet com-
pleted. �

Exercise 6.11

Q

Why is Q-learning considered an off-policy control method?

A

Q-learning is off-policy because the action-selection at St+1 (used for the Q-update) is determin-
istic i.e. it chooses the greedy action with probability 1. This is in contrast with the behaviour
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policy used to collect the data which is ε-greedy. The policy being updated is therefore different
from that being used to collect data, and the algorithm is off-policy.
�

Exercise 6.12

Q

Suppose action selection is greedy. Is Q-learning then exactly the same algorithm as SARSA?
Will they make exactly the same action selections and weight updates?

A

If action-selection is greedy, the algorithms become identical, but the action selections and
weight updates may differ depending on the arbitrary initialisation of Q and S. For example,
if each state-action pair is assigned a random value Q(S,A) ∈ (0, 1], the greedy action selection
in each case will differ. Because action selection differs, updates differ, and because neither
algorithm explore, there is no guarantee they will converge on the same solution. �

Exercise 6.13

Q

What are the update equations for Double Expected Sarsa with an ε-greedy target policy?

A

Instead of taking the maximum action over Q, we continue to follow our ε-greedy behaviour
policy. The expected sarsa update is:

Q(St, At)← Q(St, At) + α

[
Rt+1 + γ

∑
a

π(a|St+1)Q(St+1, a)−Q(St, At)

]
(119)

Therefore our updates become:

Q1(St, At)← Q1(St, At) + α

[
Rt+1 + γ

∑
a

π(a|St+1)Q2(St+1, a)−Q1(St, At)

]
(120)

Q2(St, At)← Q2(St, At) + α

[
Rt+1 + γ

∑
a

π(a|St+1)Q1(St+1, a)−Q2(St, At)

]
(121)

with our policy π being ε-greedy. �

Exercise 6.14

Q

Describe how the task of Jack’s Car Rental (Example 4.2) could be reformulated in terms of
afterstates. Why, in terms of this specific task, would such a reformulation be likely to speed
convergence?
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A

In Jack’s car rental example we each location can hold cars in the range (0,20). Up to 5 cars
can be moved from one location to the other overnight to accommodate expected sales, taking
one of these actions will move us deterministically to a new state. If there was uncertainty in
how we transition between states, it makes sense to learn a conventional value function that
probabilistically accounts for this uncertainty, but given the transition is certain, we can learn
the afterstates (the states from which we will sell the cars in the morning) and proceed.
We speed convergence by reducing the number of states to be evaluated. For example, if our
state in the evening is five cars at each location: (5, 5) and our action is to move one car to the
second location such that our morning state becomes (4, 6), we can evaluate this state as the
same as the state-action pair of (4, 6) and choosing to move no cars. �
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7 n-step Bootstrapping

Exercise 7.1

Q

In Chapter 6 we noted that the Monte Carlo error can be written as the sum of TD errors (6.6)
if the value estimates don’t change from step to step. Show that the n-step error used in (7.2)
can also be written as a sum TD errors (again if the value estimates don’t change) generalizing
the earlier result.

A

The n-step error in equation 7.2 is Gt:t+n−Vt+n−1(St) and our generalised TD error is δt:t+n =
Rt+n+1 + γVt+n(St+1)− Vt+n(St). As in 6.6, we can rewrite this as:

Gt:t+n − Vt+n−1(St) = Rt+n+1 + γGt+n+1 − Vt+n(St) (122)

= Rt+n+1 + γGt+n+1 − Vt+n(St) + γVt+n(St+1)− γVt+n(St+1) (123)

= δt:t+n + γ(Gt+n+1 + Vt+n(St+1)) (124)

= δt:t+n + γ [Rt+n+2 + γGt+n+2 − Vt+n+1(St+2)] (125)

= δt:t+n + γδt+1:t+n+1 + γ2(Gt+n+2 + Vt+n+1(St+1)) (126)

= δt:t+n + γδt+1:t+n+1 + γ2δt+2:t+n+2 + · · ·+ γT−t−1(Gt+n+T−t−1 − Vt+n+T−t−2(ST ) + γT−t(Gt+n+T−t − Vt+n+T−t−1(ST )
(127)

= δt:t+n + γδt+1:t+n+1 + γ2δt+2:t+n+2 + · · ·+ γT−t−1(GT+n−1 − VT+n−2(ST ) + γT−t(0)
(128)

=

T−1∑
k=t

γk−tδt+k:n+k (129)

(130)

�

Exercise 7.2

Q

With an n-step method, the value estimates do change from step to step, so an algorithm that
used the sum of TD errors (see previous exercise) in place of the error in (7.2) would actually
be a slightly different algorithm. Would it be a better algorithm or a worse one? Devise and
program a small experiment to answer this question empirically.

A

This is a programming exercise, the relevent code can be found on my GitHub.

�

Exercise 7.3

Q

Why do you think a larger random walk task (19 states instead of 5) was used in the examples
of this chapter? Would a smaller walk have shifted the advantage to a different value of n? How
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about the change in left-side outcome from 0 to -1 made in the larger walk? Do you think that
made any difference in the best value of n?

A

• If the smaller, 5-state random walk had been used the optimal value for n would likely
have been smaller. As explained in the example, setting n to 3 and observing an episode
starting at C and transitioning C → D → E → Terminal would update C toward the
reward of 1, which would represent an incorrect estimation of the true value of C. It
seems that the likely optimal value in this case would be n = 2, and so we could make the
general assumption that for smaller state-spaces, smaller values of n are more appropriate.
If n ≥ 2 then, for longer episodes, updates would no longer be bootstrapping on other
state value, but instead be making updates based on their own values.

• I suspect that the change in the left value to -1 from 0 reduced the optimal value of n in
this example. Setting the left value to -1 effectively locates states on the left side of the
walk closer to a reward, meaning updates need not back-propagate as far to make good
updates to the value of these states.

�

Exercise 7.4

Q

Prove that the n-step return of Sarsa (7.4) can be written exactly in terms of a novel TD error,
as:

Gt:t+n = Qt−1(St, At) +

min(t+n,T )−1∑
k=t

γk−t [Rk+1 + γQk(Sk+1, Ak+1)−Qk−1(Sk, Ak)] (131)

A

We have:
Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnQt+n−1(St+n, At+n) (132)

and:
Qt+n(St, At) = Qt+n−1(St, At) + α [Gt:t+n −Qt+n−1(St, At)] (133)

Denote:

Gt:t+n
.
=

n∑
i=1

γi−1Rt+i + γnQt+n−1(St+n, At+n) (134)

for n ≥ 1 and 0 ≤ t < T − n and with Gt:t+n = Gt if t+ n > T
If we set τ = min(t+ n, T )− 1, we observe that:

min(t+n,T )−1∑
k=t

γk−t [Rk+1 + γQk(Sk+1, Ak+1)−Qk−1(Sk, Ak)] =

τ∑
k=t

γk−t [Rt+1 + γQk(Sk+1, Ak+1 −Qk−1(Sk, Ak)]

(135)

= Gt:t+n −Qt−1(St, At) (136)

(137)

�
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Exercise 7.5

Q

Write the pseudocode for the off-policy state-value prediction algorithm described above.

A

The algorithm follows much the same form as that described on page 149:

Figure 10: Off-policy n-step sarsa pseudocode

Of course, this time we initialize V (s) arbitrarily instead of Q(s, a). In the final if statement, G
instead becomes:

G← ρτ

Rτ+1 +

min(τ+n,T )∑
i=τ+1

γi−τ−1Ri

+ (1− ρτ )Vτ+n−1(St) (138)

and the state value update becomes:

V (Sτ )← V (Sτ ) + α [G− V (Sτ )] (139)

�
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Exercise 7.6

Q

Prove that the control variate in the above equations does not change the expected value of the
return.

A

In equation 7.13, we know that the expected value of ρt = 1, therefore:

E [(1− ρt)Vh−1(St)] = Eb [(1− ρt)Vh−1(St)] (140)

= Eb [(1− ρt)Vh−1(St)] (141)

= Eb [(1− 1)Vh−1(St)] (142)

= 0 (143)

(144)

In equation 7.14, the control variate is slightly different, we have:

Eb
[
V̄h − 1(St+1 − ρt+1Qh − 1(St+1, At+1))

]
=
∑
a

π(a|St+1)Qh−1(St+1, a)−
∑
a

b(a|St+1)ρt+1Qh−1(St+1, a)

(145)

=
∑
a

π(a|St+1)Qh−1(St+1, a)−
∑
a

b(a|St+1)
π(a|St+1)

b(a|St+1)
Qh−1(St+1, a)

(146)

= 0 (147)

(148)

�

Exercise 7.7

Q

Write the pseudocode for the off-policy action-value prediction algorithm described immediately
above. Pay particular attention to the termination conditions for the recursion upon hitting the
horizon or the end of episode.

A

TBC
�

Exercise 7.8

Q

Show that the general (off-policy) version of the n-step return (7.13) can still be written exactly
and compactly as the sum of state-based TD errors (6.5) if the approximate state value function
does not change.

A

TBC
�
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Exercise 7.9

Q

Repeat the above exercise for the action version of the off-policy n-step return (7.14) and the
Expected Sarsa TD error (the quantity in brackets in Equation 6.9).

A

TBC
�

Exercise 7.10

Q

Devise a small off-policy prediction problem and use it to show that the off-policy learning
algorithm using (7.13) and (7.2) is more data efficient than the simpler algorithm using (7.1)
and (7.9).

A

TBC
�

Exercise 7.11

Q

Show that if the approximate action values are unchanging, then the tree-backup return (7.16)
can be written as a sum of expectation-based TD errors:

A

If the action values are unchanging then we get:

Gt:t+n = Rt+1 + γ
∑

a 6=At+1

π(a|St+1)Q(St+1, a) + γπ(At+1|St+1)Gt+1:t+n (149)

(150)

We have been given:
δt

.
= Rt+1 + γV̄ (St+1)−Q(St, At) (151)

and:
V̄h

.
=
∑
a

π(a|Sh)Q(Sh, a) (152)
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Then we can say:

Gt:t+n −Q(St, At) = Rt+1 + γV̄ (St+1)− γπ(At+1|St+1)Q(St+1, At+1) + γπ(At+1|St+1)Gt+1:t+n −Q(St, At)

(153)

= δt − γπ(At+1|St+1)Q(St+1, At+1) + γπ(At+1|St+1)Gt+1:t+n (154)

= δt + γπ(At+1|St+1) [Gt+1:t+n −Q(St+1, At+1)] (155)

=
... (156)

Gt:t+n = Q(St, At) +

min(t+n,T )−1∑
i=1

δi

i∏
j=t+1

γπ(Aj , Sj) (157)

(158)

where the product operator has the behaviour
∏b
a[]̇ = 1 for a > b. Shoutout to Bryn Hayder

for this answer.
�
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8 Planning and Learning with Tabular Methods

Exercise 8.1

Q

The nonplanning method looks particularly poor in Figure 8.3 because it is a one-step method;
a method using multi-step bootstrapping would do better. Do you think one of the multi-step
bootstrapping methods from Chapter 7 could do as well as the Dyna method? Explain why or
why not.

A

If we used a multi-step bootstrapping method (e.g. n-step Sarsa), we could back-propogate the
reward from the final timestep along the trajectory followed for some large value of n. This of
course would only update the action-values of the n action-values prior to receiving the reward
and leave the remain 1700 - n action values unchanged. When running a second episode using
this approach, the agent would still act naively until it reached its first state-action pair with
some value, which it could then bootstrap from to update previous states. Without a model
of the environment (like Dyna) it cannot plan in the same way, and cannot reap the efficiency
gains that Dyna enjoys.

�

Exercise 8.2

Q

Why did the Dyna agent with exploration bonus, Dyna-Q+, perform better in the first phase
as well as in the second phase of the blocking and shortcut experiments?

A

I’m not sure it is performing better, rather that the Dyna-Q+ algorithm is increasing the reward
associated with every state at every timestep when Dyna-Q is not, so cumulative reward must
be higher in absolute terms than Dyna-Q. In this sense a direct comparison on the basis of cu-
mulative reward is perhaps unfair. Due to the increased exploration of the Dyna-Q+ algorithm,
it is however likely that it found the optimal policy more quickly than Dyna-Q and so was able
to exploit it quicker for higher cumulative reward

�

Exercise 8.3

Q

Careful inspection of Figure 8.5 reveals that the difference between Dyna-Q+ and Dyna-Q
narrowed slightly over the first part of the experiment. What is the reason for this?

A

Dyna-Q+ is forced to explore continually having already obtained the optimal policy, meaning
that when Dyna-Q is exploiting its learned optimal policy, Dyna-Q+ is exploring sub-optimal
trajectories and receiving less reward.

�
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Exercise 8.4

Q

The exploration bonus described above actually changes the estimated values of states and
actions. Is this necessary? Suppose the bonus k

√
τ was used not in updates, but solely in action

selection. That is, suppose the action selected was always that for which Q(St, a) + k
√
τ(St, a)

was maximal. Carry out a gridworld experiment that tests and illustrates the strengths and
weaknesses of this alternate approach.

A

This is a programming exercise, the relevent code can be found on my GitHub.
Summary of the models:

Figure 11: Cumulative reward for three model-based agents on the blocked maze task after 10000
timesteps

Dyna Q uses a conventional e-greedy policy, and plans with a model that uses only previously
received states and rewards.

Dyna Q+ uses a conventional e-greedy policy, and plans with a model that gives additional
value to the action proportionate to the time passed since they were last selected. Doing
so adds arbitrary value to the value function.

Dyna New uses a novel policy that adds value to each action before selection, in the same way
as Dyna Q+, then selects the value maximising action. This combines exploration and
exploitation unlike the above two that keep these regimes separate.

Figure 11 illustrates the different learning rates of the three agents. Dyna Q learns fastest
initially as it can use its model to learn the optimal policy quickly, but struggles to adapt to the
maze block changes after timestep 10000 as its model is inflexible to change. Dyna Q+ has a
higher degree of exploration than Dyna Q (because it explores both in the real environment and
the simulated environment while planning) and so does not find the optimal policy as quickly
as Dyna Q. It does, however, adapt to the wall switch speedily, and exploits its new knowledge
to find the optimal policy. Finally, Dyna New, finds the optimal policy before the wall switch,
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then struggles to capture it post-switch. This is because Dyna New cannot perform exploration
in planning, it only explores when taking actions in the real environment. This means that it
will take many timesteps before a string of actions taking it to the other side of the grid build
enough value for it to be explored.
Dyna Q Plus performs best in the long run by combining exploration in planning, and exploita-
tion in the real environment. It does however seem these results are subject to initialisation and
hyper-parameters. In some runs of the experiment Dyna New never found the optimal policy
before the wall switch, its performance seems to be closely linked to the initialisation of τ

�

Exercise 8.5

Q

How might the tabular Dyna-Q algorithm shown on page 164 be modified to handle stochastic
environments? How might this modification perform poorly on changing environments such as
considered in this section? How could the algorithm be modified to handle stochastic environ-
ments and changing environments?

A

Figure 12: Tabular Dyna-Q algorithm

• In part (e) of the algorithm, instead of updating R and S′ directly, we would store samples
of R and S′ from which we can compute distributions and thus expectations.

• This would perform poorly because it would be bias toward earlier observations made in
the unchanged environment.

• We could likely rectify this by weighting more recent observations, or discounting past
observations in the distribution. Equally we could quantify the agent’s confidence in its
model e.g. if it hasn’t selected a state-action pair in a long time, its confidence in its model
should be low and vice versa. This could manifest as a relationship with τ as discussed
with Dyna-Q+.

�
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Exercise 8.6

Q

The analysis above assumed that all of the b possible next states were equally likely to occur.
Suppose instead that the distribution was highly skewed, that some of the b states were much
more likely to occur than most. Would this strengthen or weaken the case for sample updates
over expected updates? Support your answer.

A

A skewed distribution would strengthen the case for sample-based updates. We are more likely
to sample from weighted parts of the distribution and so our estimate of the expected value will
approach the true value quicker than would be the case with a uniform distribution i.e. our
initial samples will provide a good estimate of the true value. The expectation will require the
same computational effort regardless of the shape of the distribution.

�

Exercise 8.7

Q

Some of the graphs in Figure 8.8 seem to be scalloped in their early portions, particularly the
upper graph for b = 1 and the uniform distribution. Why do you think this is? What aspects
of the data shown support your hypothesis?

A

In the uniform distribution case with b = 1 the start-state is updated every |T | updates, at
which point it’s value will be moved toward it’s new value. Whereas in the on-policy case, the
start state is visited with probability 0.1 (given this is the probability of termination) and so
it is updated far more regularly. The time taken to wait for the updates in the uniform case
(when other states not close to the start state are being updated) is when the scallops appear
in the curves.

�
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9 On-policy Control with Approximation

Exercise 10.1

Q

We have not explicitly considered or given pseudocode for any Monte Carlo methods in this
chapter. What would they be like? Why is it reasonable not to give pseudocode for them? How
would they perform on the Mountain Car task?

A

• Episodes would be rolled-out using an ε-soft policy, with states, actions and rewards stored
in memory. Then, we loop through each state-action pair visited in the episode updating
the weights of our function approximator based on the returns observed thereafter. Control
would be performed by following our ε-soft policy on the obtained value function.

• Pseudocode likely not provided because the algorithm is trivial compared to n-step sarsa.

• With the monte carlo return being an unbiased estimator of Ut, it is possible that monte
carlo control could converge on the optimal solution to the mountain car task quicker than
n-step sarsa.

�

Exercise 10.2

Q

Give pseudocode for semi-gradient one-step ExpectedSarsa for control.

A

n-step sarsa pseudocode is: The algorithm would be amended to have n = 1 and the weight
update rule as

wt+1 ← wt + α

[
Rt+1 + γ

∑
a

π(a|St+1)q̂(St, a,w)− q̂(St, At,w)

]
∇q̂(St, At,w) (159)

�

Exercise 10.3

Q

Why do the results shown in Figure 10.4 have higher standard errors at large n than at small
n?

A

The number of n step permutations grows exponentially in n, so the variance of the n-step
update will grow with n. �

Exercise 10.4

Q

Give pseudocode for a differential version of semi-gradient Q-learning.
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Figure 13: Episodic semi-gradient n-step sarsa for estimating q̂ ≈ q∗

A

Pseudocode for differential semi-gradient sarsa is given in Figure 14. The algorithm is the same
other than the action selection for A′ is greedy, not ε-greedy. �

Exercise 10.5

Q

What equations are needed (beyond 10.10) to specify the differential version of TD(0)?

A

We need to specify the update to our estimated average return rate R̄ and our update to the
weights of our function approximator. Which are:

R̄← R̄+ βδ (160)

and
w← w + αδ∇v̂(S,w) (161)
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Figure 14: Differential semi-gradient sarsa for estimating q̂ ≈ q∗

Exercise 10.6

Q

Suppose there is an MDP that under any policy produces the deterministic sequence of rewards
+1, 0, +1, 0, +1, 0,... going on forever. Technically, this violates ergodicity; there is no
stationary limiting distribution µπ and the limit (10.7) does not exist. Nevertheless, the average
reward (10.6) is well defined. What is it? Now consider two states in this MDP. From A, the
reward sequence is exactly as described above, starting with a +1, whereas, from B, the reward
sequence starts with a 0 and then continues with +1, 0, +1, 0,.... We would like to compute the
differential values of A and B. Unfortunately, the differential return (10.9) is not well defined
when starting from these states as the implicit limit does not exist. To repair this, one could
alternatively define the differential value of a state as (see below). Under this definition, what
are the differential values of states A and B?

A

10.6 is

r(π)
.
= lim
h→∞

1

h

h∑
t=1

E [Rt|S0, A0:t−1 π] (162)

= lim
h→∞

1

h

h∑
t=1

0.5 (163)

= 0.5 (164)

and the new expression for the differential value is

vπ(s)
.
= lim
γ→1

lim
h→∞

h∑
t=0

γt (Eπ[Rt+1|S0 = s]− r(π)) (165)
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We can rewrite this as

v(A; γ) = 0− R̄+ γV (B; γ) (166)

v(B; γ) = 1− R̄+ γV (A; γ) (167)

(168)

so

v(A; γ) = 0− R̄+ γ
(
1− R̄+ γV (A; γ)

)
(169)

= γ2V (A; γ)− R̄(1 + γ) + γ (170)

= γ2V (A; γ) +
1

2
γ − 1

2
as R̄ = 0.5 (171)

=
1

2

1− γ
1− γ2

(172)

=
1

2(1 + γ)
(173)

So V (A) = limγ→1 V (A; γ) = 1
4 and V (A; γ) = 3

4 .

Exercise 10.7

Q

Consider a Markov reward process consisting of a ring of three states A, B, and C, with state
transitions going deterministically around the ring. A reward of +1 is received upon arrival
in A and otherwise the reward is 0. What are the differential values of the three states, using
(10.13)?

A

We can deduce that r(π) = 1
3 . Then we write

v(A; γ) = 0− R̄+ γV (B; γ) (174)

v(B; γ) = 0− R̄+ γV (C; γ) (175)

v(C; γ) = 1− R̄+ γV (A; γ) (176)

(177)

We get

v(A; γ) = 0− R̄+ γ
[
0− R̄+ γ

[
1− R̄+ γV (A; γ)

]]
(178)

= −1

3
− γ 1

3
+

2

3
γ2 + γ3v(A; γ) (179)

=
1

3
(2γ2 − γ − 1) + γ3

∞∑
t=0

γt(at −
1

3
) (180)

=
1

3

(2γ2 − γ − 1)

1− γ3
(181)

= −1

3

2γ + 1

γ2 + γ + 1
(182)

as limγ→1 V (A)→ − 1
3 , therefore V (B) = 0 and V (C) = 1

3 .
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Exercise 10.8

Q

The pseudocode in the box on page 251 updates R̄t using t as an error rather than simply
Rt+1 − R̄t. Both errors work, but using t is better. To see why, consider the ring MRP of three
states from Exercise 10.7. The estimate of the average reward should tend towards its true value
of 1 3 . Suppose it was already there and was held stuck there. What would the sequence of
Rt+1 − R̄t. errors be? What would the sequence of t errors be (using Equation 10.10)? Which
error sequence would produce a more stable estimate of the average reward if the estimate were
allowed to change in response to the errors? Why?

A

If we fix R̄t = 1
3 then our sequence of differential rewards, starting at state A, become:

− 1

3
,−1

3
,

2

3
,−1

3
,−1

3
,

2

3
, . . . (183)

Instead our td error, defined by δt
.
= Rt+1−R̄t+q̂(St+1, At+1,wt)−q̂(St, At,wt) gives differential

rewards:
0, 0, 0, 0, 0, 0, . . . (184)

The invariance in our output will, correctly, cause no updates to our already converged estimate
of the average return r(π).

Exercise 10.9

Q

In the differential semi-gradient n-step Sarsa algorithm, the step-size parameter on the average
reward, β , needs to be quite small so that R̄ becomes a good long-term estimate of the average
reward. Unfortunately, R̄ will then be biased by its initial value for many steps, which may
make learning inefficient. Alternatively, one could use a sample average of the observed rewards
for R̄. That would initially adapt rapidly but in the long run would also adapt slowly. As the
policy slowly changed, R̄ would also change; the potential for such long-term nonstationarity
makes sample-average methods ill-suited. In fact, the step-size parameter on the average reward
is a perfect place to use the unbiased constant-step-size trick from Exercise 2.7. Describe the
specific changes needed to the boxed algorithm for differential semi-gradient n-step Sarsa to use
this trick

A

As per exercise 2.7 we define β to be:

βnew ←
β

ōn
(185)

with
ōn ← ōn−1 + α(1− ōn−1) with ō0

.
= 0 (186)
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