Rollouts | Network |
---|---|
Rollouts | Network |
---|---|
Pros 💚 | Cons 💔 | |
---|---|---|
Model-free | Performance | Data inefficiency |
Model-based | Data efficiency | Performance; Model bias |
SOA Energy Efficiency | SOA Data Efficiency | Authors | |
---|---|---|---|
Model-free | 10-30% | 1-2 years simulated data | [2,3] |
Model-based | 5-9% | 3-12 hours live data | [4, 5] |
after [6]
some *blue* text | some *blue* text | some *blue* text | |
---|---|---|---|
Figure 1: Cumulative emissions produced by each controller across the (a) Mixed Use, (b) Apartment, and (c) Seminar Centre environments. Green: PMBRL; Orange: PPO; Blue: MPC-DNN; Red: RBC.
Figure 2: Mean daily building temperature produced by each controller across the (a) Mixed Use, (b) Apartment, and (c) Seminar Centre environments. Green: PMBRL; Orange: PPO; Blue: MPC-DNN; Red: RBC; Purple Dashed: Outdoor temperature (the primary system disturbance). The green shaded area illustrates the target temperature range [19, 24].
[1] Cullen, Jonathan and Julian Allwood (2010). “The efficient use of energy: Tracing the global flow of energy from fuel to service”. In: Energy Policy 38.1, pp. 75–81.
[2] Zhang, Z., Chong, A., Pan, Y., Zhang, C., Lam, K.P.: Whole building energy model for hvac optimalcontrol: A practical framework based on deep reinforcement learning. Energy and Buildings199,472–490 (2019)
[3] Wei, T., Wang, Y., Zhu, Q.: Deep reinforcement learning for building hvac control. In: Proceedingsof the 54th Annual Design Automation Conference 2017. DAC ’17, Association for ComputingMachinery, New York, NY, USA (2017).
[4] Lazic, N., Lu, T., Boutilier, C., Ryu, M., Wong, E.J., Roy, B., Imwalle, G.: Data center cooling usingmodel-predictive control. In: Proceedings of the Thirty-second Conference on Neural InformationProcessing Systems (NeurIPS-18). pp. 3818–3827. Montreal, QC (2018)
[5] Jain, A., Smarra, F., Reticcioli, E., D’Innocenzo, A., Morari, M.: Neuropt: Neural network basedoptimization for building energy management and climate control. In: Bayen, A.M., Jadbabaie, A.,Pappas, G., Parrilo, P.A., Recht, B., Tomlin, C., Zeilinger, M. (eds.) Proceedings of the 2nd Confer-ence on Learning for Dynamics and Control. Proceedings of Machine Learning Research, vol. 120,pp. 445–454
[6] Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep reinforcement learning in a handful oftrials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114 (2018)
[7] Scharnhorst, P., Schubnel, B., Fern ́andez Bandera, C., Salom, J., Taddeo, P., Boegli, M., Gorecki, T.,Stauffer, Y., Peppas, A., Politi, C.: Energym: A building model library for controller benchmarking.Applied Sciences11(8), 3518 (2021)